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A simplified explanation of the modified Gauss-Newton linearization
(curve-fitting) procedure is presented by translating this algorithm into a
spreadsheet with examples from various single- and multiple-pulse NMR
experiments. Comparisons are made with linear regression analysis of
mathematically manipulated data.

INTRODUCTION

Numerical methods used to fit various nonlinear functions to data have been available for
more than 30 years (I). However, for nonlinear parameter estimation many people continue to
use techniques that rely on linear regression analysis (2). The problem is that direct linearization
sometimes provides a good model only on a restricted domain (3, 4). Thus it is often
advantageous to be able to calculate a solution to a nonlinear expression, or model, directly.

In this article we review the modified Gauss-Newton (I, 5) method, one of the most common
techniques used for curve fitting in specialized statistical programs (6) or software packages
associated with NMR spectrometers. To illustrate the numerical formalism and ease of operation
of this method, we created a modified Gauss-Newton (G-N) template from common spreadsheet
software. Only recently has it been possible to perform these calculations on microcomputers
through the manipulation of relatively large matrices. Except for speed, the template we describe
herein works as well as any of the equivalent curve-fitting programs on larger computers with
which we are familiar. All that is numerically required for a G-N template is the ability to do
matrix transposition, multiplication, and inversion, and to solve recurrence relations (equations
involving "circular references;" e.g., formulas and/or cells that refer to themselves for solution)
(7). Problems involving circular references require repeated calculations, or iterations, until a
specific numeric condition — usually some minimal change as defined by the numeric
precision — is met.

* To whom correspondence should be addressed. Reference to a brand or firm name does not constitute endorsement by the
U.S. Department of Agriculture over others of a similar nature not mentioned.



G-N LINEARIZATION

The most commonly used curve-fitting techniques (nonlinear least-squares approximation) are
Gauss-Newton linearization (G-N), steepest descent, and the Levenberg-Marqardt method (5, 6).
In the G-N method (7) a Taylor series is used to linearize the function of interest. Say we have a
function, F, that depends on parameters, P, {{ = 1, 2, ..., L}, which we want to fit to
observations, Y,, that were measured at different values of X, {m = 1, 2, ..., M}. For
simplicity’s sake, let us make the total number of parameters small (e.g., L = 2). The difference
between Y, and F, calculated with parameter values P, and P,, is

Ay, = Y, - F(R,B; X,) (1]

Assuming that the errors in the measured Y values are all equal, we seek the values of P, and P,,

which minimize the sum of the squares of these deviations. At any nth stage of iteration the
parameter values are P" and Py, and the value of F is

E} = F(P P X,) [2]

For (P,P,) near (P P;) one can expand F, in a Taylor series around (P;P;). Retaining only
first-order terms yields the expression
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With the above approximation, the error sum of squares is
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To minimize, the derivatives (gradient) of ¢ are set to zero such that (A = 1 or 2)
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One may simplify the algebra by introducing vector and matrix notation (8, 9). In this notation,
Z (M X 2) represents the gradient of F" evaluated at X,, ..., X,,_,, X, and contains elements
Z., = OF}oP. Z', a 2 X M matrix, is the transpose of Z. Similarly, the vector P (2 X 1)
contains elements P,. Applying this notation and rearranging Eq. [7] gives

Z(Y -F" = Z'z® - P" [81

which, when written out completely, gives
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Our goal is to solve for P — P”" and, because Z'Z is a square (2 X 2) matrix, each side of the
equation is multiplied by its inverse, (Z'Z);' assuming that the matrix is nonsingular (we will
mention the singular case later). This manipulation gives the expression for the parameter change
at the nth iteration

AP = P-P) = (ZZ)'Z(Y - F") [10]

The term AP is considered to have converged (n = N) when values from the previous calculation,
P, approximately equal values from the latest iteration, B".

By applying the theory of linear regression to the approximate linear equation we obtain an
expression for the standard error in the parameter estimates. For the /th parameter, the standard
error is given (5) by

Z2); £ [¥, - BT
(SE), = =L [11]

where (Z'Z);} is the lIth element of the square (L X L) (Z'Z)" matrix [e.g., the standard error for
P! is equal to the above equation with (Z'Z);) = (Z'Z)p]. This term, which is used as an
estimate of the standard error in the final estimate of P, (P), is often referred to as the
asymptotic standard error because it is derived only from the approximate linear equation. Using
this estimate, one would quote the estimate of P, as

P, = P+ (SE), [12]

The G-N method is widely used because, in theory at least, it should always converge. Of
course, problems can be found in any curve-fitting method. However, when we have used the
G-N linearization method (Table 1) we have not experienced the problems with nonconvergence
or overshooting that have been reported elsewhere (5). Although we have found the methods
described here to be suitable for a large variety of problems, certain pitfalls associated with any
method used to solve nonlinear least squares problems should be noted.

First, unlike the linear case, there is no guarantee of a unique solution to a nonlinear
problem. Almost all methods for obtaining solutions to nonlinear problems, including the one
outlined above, rely on iterating from an initial set of parameter estimates. The fact that these
iterations converge to a certain final value does not necessarily imply that another solution with
an even smaller sum of squares of residuals might not exist and be reachable from another set of
initial estimates. In practice, for problems such as those considered here, we believe that the
existence of more than one physically reasonable solution is highly unlikely.



TABLE 1
Common NMR-Related Functions We Have Tested with the G-N Spreadsheet

Parameter(s) of Purpose of Experiment Function to Fit
Interest
I Ten _ l’x,-Af] _[x,, —A7]
Tew, T,,, 1 Contact time study* . — 1 —e™ Tn JelT Jo X =171 [13]
1 — €1
I,
~[Xp — A1]
T Inversion recovery I, [1 -2 " X, =7 [14]
X
T, Carr-Purcell-Meiboom-Gill Le ™+ v, X, = 27 [15]
PW,,. Probe performance* I, = sin [Plv;-"r——], X, = PW, [16]
180°
G- Xy
o, I, &, Gaussian deconvolution* )iJI,.e 2 X, = S [17]
g, L, § Lorentzian deconvolution* E—-———Iia"z—' X =6 [18]
ir fir Yi f (Xm - 6i)2 + 0;'2 s m observed
K Spin-exchange processes . [1 - e"‘""’]; X = Toiing [19]
* Function is not readily transformable for linear regression analysis

Second, one should not attempt to obtain parameters with inadequate data or an inappropriate
model. A trivial example would be attempting to find the parameters A and B in a model

Y = AX + Bsin(X) [20]

where data exist only for small X,. Because sin(X,) = X, for values of X, near X,, = 0, the
equation may be approximated by

Y £ 4+ BX [21]

which indicates that we can determine the sum, 4 + B, but not 4 or B individually. This ill-
posedness manifests itself as Z'Z becomes almost singular when the values of X are all close to
zero. In a similar fashion, the matrix for solving the inversion recovery equation (Eq. [14]),
would be nearly singular if one attempted to solve for I, by using only data for small values of 7.
In these and less obvious cases, this ill-conditioning will often be apparent by the large standard
errors for the parameters.

G-N LINEARIZATION ON A SPREADSHEET

To demonstrate the G-N template (Fig. 1A and 1B; Macintosh Ilci with Excel 4.0 and System
7.0 with 8 Mb RAM) we have chosen the four-parameter equation,
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F, = F = I,,F, = Tty, , = T,,,P, = A} X,, = 1) [22]
Ten T - Ar T - Ar
—_ -1 -
= _.{9._ 1 - eT" ’ Ten ] e[ Ty, ] [23]
1 — T
L,

which describes the buildup and eventual loss of ®C magnetization caused by polarization transfer
from remotely or directly attached 'Hs (10). The data to be fit are linear baseline-corrected and
integrated "C=0 resonances, ¥, = I._,, which change as a function of different polarization
transfer, or contact, times (X,, = 7).

A | B I c I ) 1 E I F I [ I H | ] I J
| 1] X, Y, 1, Teylps Ty, T us Atfps =10
2] A 28 03 13.96 853.16 2053.40 2762 Enorss= 3 [Y.-F2f
X 50 1.51 4 Tew Ty, 'S st
n 100 2.01 13.96 853.16 2054.40 -27.62 0.391745186
n 200 2.95
n 400 4.71
T 800 6.79 oFs oF* oF" oF"
5] 1000 7.54 vl oy I E T ar
. 2000 os (ZIY'Z|Y,-F] Y.-F. A . »
m 4000 3.02 -0.037151446 | -0.324274421 m=1 0.0598045446 | -0. 5.17425E-06 | -0.014982576
m 6000 1.38 2.409951017 | 0.318989769 m=2 0.085315919 | -0. .10597E-05 | -0.014359723
12 -5.19530465 | 0.130967946 m=3 0.13460115 | -0.002040112 | 2.88508E-05 | -0.013174267
m 0.947299106 | -0.13674248 m=4 | 0.221113358 | -0.003147914 | 8.54816E-05 | -0.011027794 |
E -0.214995283 m=5 .352793358. | -0. 1 -0.007513929
(1s] -0.117495272 m=6 494806252 | -0. .000741638 | - 92
18 P,".rmndarderror 0.221901117 m=7 52421911 -0.00401302 -0.001342393
17 9765 |i=1 -0.0791843 n=8 478451597 | -0.000613472 | 0.001 .0017
18| 1702645 |1=2 -0.126551395 m=9 0.225397664 | 0.001444403 | 0.0021191 .0013
19| 3508832 /=3 0.1320306 M=10 0 0.000870776 | 0.00138119¢
20 129718 |L=4
[21]
| 22}
|23}
| 24}
23 ]
26
27 ]
28
A I B I [ | [) 1 E 1 F I [ I H | ] ] J
20
] B
[31]
[32] Z' = TRANSPOSE(F10:119) (4L X 10 M)
[33] 0.050045446  0.085315919  0.13460115  0.221113358  0.352793358  0.494806252  0.524219118  0.478451597  0.225397664 O,
[34] -0.000936528 -0.001333058 -0.002040112  -0.003147914  -0.004396508 -0.004538506  -0.00401302  -0.000613472  0.001444403  0.000870776
13s] 5.17425E-06  1.10597E-05  2.88508E-05  8.54816E-05  0.000261916  0.000741638  0.000995558  0.001966338  0.002119613  0.001381196
[38] -0.014982576  -0.014359723 -0.013174267 -0.011027794 -0.007513929 -0.002838492 -0.001342393  0.001733209  0.001386608  0.000593776
37 8 T
m
[39]
|40]
{41] 2'Z = MMULT(A33:]36,F10:119) (4 LX 4 L)
[42] 1.00058752  -0.006930226  0.00254732  -0.009885631
[43] -0.006930226  7.50781E-05  -5.80218E-06  0.000147527
[44] 0.00254732  -5.80218E-08  1.1885E-05  1.98582E-07
[4s] -0.009885631 0.000147527  1.98582E-07  0.00079745
46
o
m
_0_9_
[50] (2'Z)" = MINVERSE(A42:D45) (4L X 4 L)
51
[32] 50.83161857  5025.94737  -10367.01919  -185.5029149
[33] 5025.94737  444013.0336  -860122.7394 -19622.92294
[s4] -10367.01919  -860122.7394  1885700.443  30136.129
[53] -185.5020149 -19622.92294  30136.129  2577.097408
56
7 " + 3
E 0 + + {
m ° 2000 4000 6000
[e0] (Z2'Z)"'Z' = MMULT(A52:D55A33:J36) (4L X 10 M) T/ s
(1]
(62| 1.551515844  0.953824677  -0.05532433  -1.432182649 -2.309854533 -0.367258531  1.123701054  4.836672209  -1.485867268  -4.703844944
[43] 170.4802598  100.1652437  4.364234885 -143.5379818 -256.8208214 -110.4857011  22.90419833  406.9799777  -76.16600917  -363.7137274
[e4] -248.3562037 -140.7604791  16.71684631  244.1638989  301.5757084  86.97193043  -146.0304959  -672.20828  450.6763022  946.6706907
e3] -31.03131752 _ -26.3 -18.01785661  -5.089508589  9.357154891  12.30577509  8.045792515  -12.09157499  -2.704986555 __ 0.483713377

Figure 1. G-N linearization spreadsheet for fitting CPMAS NMR contact time data to Eq.
[13]. Part (A) contains initial (P) and final (P}) values for the parameters I,, Ty, 1,,
and A7 as well as Z, AP, and standard error arrays. Part (B) contains all the
transformations of Z used in calculating AP as well as the plot of data and curve fits at
n = 0, 10, and 200 iterations. For illustrative purposes, the convergence rate factors
were made exceptionally small (R, = 0.01-0.05).
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The spreadsheet (Fig. 1) was created by carrying out the following steps.

. X, {A2:A11} and ¥, {B2:B11} data were input (Fig. 1A).

. Initial guesses (n = 0) for parameters (P,) were keyed into cells C2 (I, = 10), D2 (T, = 500

ps), E2 (I;,, = 2,000 ps), and F2 (A7 = -50 ps); I, is the maximum of the C=0
magnetization if no rotating-frame spin-lattice relaxation occurs; T, is the reciprocal
exponential rate constant describing the buildup of C=0 magnetization; T, is the rotating-
frame spin-lattice relaxation time describing the loss of C=0 magnetization as a function of
spin-lock time or 'H-"C polarization transfer time; and A7 is the time translation correction
that is needed because / > 0 when 7 = 0.

The Y, — F,' array (m = 1-10) was created such that
{D10:D19} =({B2:B11} —(($C$2/(1 —($D$2/$E$2))*(1 —EXP((($D$2/$E$2) — 1)*
(({A2:A11} —($F$2))/$D$2)))*(EXP(—({A2:A11} —($F$2))/$ES$2))))) [24]
Equalities within brackets {} indicate that the expression is applied throughout a block of
cells. Cells defined as SLETTER$NUMBER indicate that each cell within the array contains
this particular, or absolute, reference regardless of its position within the array; for example,
when m = 8

D17=B9—(($C$2/(1 —($D$2/$E$2))*(1— EXP((($D$2/ $E$2)—1)*(((A9) -

($F$2))/$D$2)))*(EXP(—((A9)—($F$2))/$E$2))))= —0.0791843 [25]

M=10

. The error sum of squares estimation, L [¥, — F']3 was calculated whereupon
m=1

G4={SUM((D10:D19)"2)} [26]

. A collection of derivative expressions for the evaluation of Z was created

oR" OF" OdF" R’
al, aT,, T, O0Ar

OFi-y OFy-, K., 8K,
al, 9T, oI, 0Ar
dF; 3Fy 3R OFr
81, T, 9T, 0Ar

1o

Z = {F10:119} =

[27]

. Z', {A33:]36}, was calculated by selecting the appropriate (4 X 10 = L X M) cells and

performing the function {=TRANSPOSE(F10:119)} (Fig. 1B).

. Z'Z, {A42:D45} (L x L), {=MMULT(A33:J36,F10:119)}
. Z'Z7! {A52:D55} (L x L), {=MINVERSE(A42:D45)}

. Z'Z7Z), {A62:365} (L X M), {=MMULT(A52:D55,A33:J36)}

AP, {C10:C13} (4 X 10 X 10 x 1 = 4 X 1), {=MMULT(A62:J65,D10:D19)}
B values, {C4:F4}, were calculated as
P’ = I, = C4 = C2 + (C10*R)) [28]

P} = T8 = D4 = D2 + (C11*R) [29]
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P} T, = E4 = E2 + (CI2*R,) [30]

P! = Ar" = F4 = F2 + (C13*R) [31]

Multiplying AP, (AP, = C10, AP, = Cl11, etc.) by a fraction (R,, the convergence rate factor
for P") allows one to slow down the convergence process so that the initial guesses do not
have to be as good, and potential problems with overshooting are avoided.

12. Cells {C2:F2} (P,,) were made equal to cells {C4:F4} (P;,) to create the circular reference
needed to induce iterative solving; the precision desired can be changed by selecting the
appropriate P, cell (C2 to F2) and changing the number of decimal places.

A plot of the data as well as the initial (n = 0), intermediate (» = 10), and final (N = 200) fits
are shown in Fig. 1B. In Fig. 2 we present the change in P" and the error sum of squares at
various stages of iteration to demonstrate graphically what occurs during the convergence process.
Notice that even though T;, initially increases rapidly as a function of n, it nevertheless reverses
direction and converges at a value only somewhat higher than the initial guess; of course, the
error sum of squares asymptotically approaches zero as n approaches N. One of the greatest
criticisms of this linearization method is that B" values sometimes oscillate around P;' and slow
the convergence process (5). In this example (Fig. 1) and others (Table 1) VAX 8350 equivalent
calculations were about five times faster (e.g., <1 min) and resulted in similar estimates of P
When we performed these same calculations on a smaller microcomputer we obtained identical
results except for a somewhat slower computational time.

800 T

M=10

> [r.-F

m=]

20 1

2250 T
2200 T
2150 -
Tlp /[LS
2100 1
2050 -
2000 : + t {
0 50 100 150 200
Iteration Number (n)

M
Figure 2. Plots of I, Ty, T,, A7, and XL [Y, — E'? derived from the. contact time fits at
various iterations, n. net



With any template as a starting point, about 30 min is required for modification to a new
function. Much of this time, which is needed to make the derivative matrix, Z, can be eliminated
by using software packages (I/I) that symbolically solve partial derivatives quickly (<30 s).
Certain software packages do not use functional values of derivatives; instead, they compute the
numerical equivalent at each stage of iteration.

G-N LINEARIZATION AND LINEAR REGRESSION

Linear regression analysis of nonlinear expressions sometimes can disguise deviations from
the fit because they involve the mathematical transformation of the original Y and/or X vectors.
Figures 3 and 4 show results of traditional 7, (2, 12) and T, (I3) experiments, respectively, in
both the nonlinear G-N (A) and log-linear (B) forms. The inversion recovery data (Fig. 3A,
T, = 313 £ 0.007 ms) show an excellent fit with the G-N method, described above, because the
deviation from the fit (Fig. 3C)

averaged only about +1%. The linear regression method, shown here in semilog format (Fig. 3B,
T, = 297 + 4.89 ms), also displays a good fit. However, only 50-70% of the original 7 values
are usable; the deviation from the retransformed semilog fit (Fig. 3D) was about threefold greater

O 2% O O
B
0.2 0.4 0.6 0.8 1
T/s
‘60 + Il 1 Il ]
0 2 4 6 8 10
T/s
10% T 10% T
o ‘1 C D
8% 8%
6% 6%
4% 4%
N
Yo=Fr 291 2%
Y, MO\O\Q
0% 0%
2% 2%
4% -4%
6% + + 6% + ' ' ;
0 2 4 6 8 10 0 02 04 06 08 1
T/s T/s

Figure 3. Inversion recovery (Eq. [14]) data plotted using the G-N fit (A) and the semilog
plot (B). Deviations in (Y, — E')/Y,, as a function of 7 for (A) and (B) are shown in (C)
and (D), respectively.
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than that of the G-N method. Statistically speaking, a comparison of residuals derived from the
G-N method and the log-linear model is not valid, but it does give a sense of the goodness of the
two fits. The major statistical criticism of the linear regression technique for T; is that least-
squares analysis on transformed data (Y*) can fail because it is based on the incorrect error
model. For example, nonlinear regression minimizes the sum of squares of the deviations
between the measured and the calculated Y vectors, as shown in Eq. [5]. To use linear
regression on Eq. [14] one must first transform the equation to get it into linear form,

1 Y, _ ﬁ_
log[-f-[l + r]il = - T, +b [33]

Ym t € [34]

Y*

which requires that

Y*

where the transformed error term, €*, is independent and identically distributed normal (i.i.d.
normal). Linear regression can be used to find the solution that minimizes the sum of squares of
the measured and calculated values of Y* and is simply a different problem than that of
mlmmlzmg E [Y — E'Pdirectly. Another problem with the linear regression technique for T; is
that one must know I as 7 approaches o (I,). Thus several I(r) values should be measured by at

1

1 B
0.8 1+
0.1
0.6 +
.!_ 0.01
1, 0 1000 2000 3000 4000 5000 6000 7000
0.4 + 27/ ms
0.2 +
0 t t } ! t t !
0 1000 2000 3000 4000 5000 6000 7000
2T/ ms
10% 10%
c I b
5% 5%
N
Y'—F_ 0% -v\Mw 0%
yﬂ
5% 1 5% T
-10% + b + -10% + ; ' i
0 2000 4000 6000 8000 0 2000 4000 6000 8000
2t/ ms 2t/ ms

Figure 4. Carr - Purcell - Meiboom - Gill (Eq. [15]) data plotted using the G-N fit (A) and
the semllog plot (B). Deviations in (Y, — E,")/Y,, as a function of 27 for (A) and (B) are
shown in (C) and (D), respectively.



least five or more 7, values to estimate I, (12). Because most measurements at long 7 values
cannot be used in the semilog linear form, the standard error terms increase with vanishing
degrees of freedom (df = M — L). Looking at the 7, data (Fig. 4A and 4B), we see that the G-N
method provides a better fit to the observed data, as evidenced by smaller deviations in
Y, — F(Fig. 4C compared with 4D).

Of course, linear regression methods are not always applicable; many useful empirical
relationships (Table 1), including our example discussed above, are not readily transformed for
linear regression analysis. Another such expression is shown in Fig. 5, where we have measured
the intensity of a resonance as the pulse width was increased (phased when PW << 90°) and fit
the data to the trigonometric function (Eq. [16]). Although such an experiment is not a standard
procedure for establishing a 90° pulse, it is a useful check of probe performance. Other uses for
G-N curve fitting in NMR are exemplified by deconvolution (Eq. [17] and [18]). Of course, for
these procedures our template is not useful for fitting more than two or three Gaussian or
Lorentzian (or any combination thereof) lines to partially resolved resonances because of
computational time limitations.

150 +
QO
100 +
180°=14.7 £ 0.1 us
50 +
10%
I o 5%
N
M 0%
50 + Ya
-5%
-100 + -10% 0
0 5 10 15 20
Pulse Width | us
-150 : : ', |
0 5 10 15 20
Pulse Width | us

Figure 5. Changes in resonance intenstity, I, as a function of pulse width (Eq. [16]) using
the G-N best fit. Deviations in (Y, — F,')/Y,, as a function of PW are shown in the inset.

CONCLUSION

In this article we have described a simple G-N linearization procedure using a spreadsheet.
We have shown that such curve-fitting techniques are statistically more appropriate than linear
regression analysis of mathematically transformed data. We have used this template to analyze
data from numerous experiments (I4-17) but have found that it is cumbersome when the data or
parameter arrays are large (e.g., M > 50, L = 5).
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